
Localized Number

Formatting in ICU and

Beyond

Internationalization &

Unicode Conference 41,

October 17, 2017

Presented by Shane Carr,

Software Engineer,

Internationalization, Google

Brief History of Numbering Systems

Prehistoric Methods for Counting
Bag of Pebbles: each pebble
corresponds to one sheep in the flock.

Knots: The number of knots tied in a
rope counts the number of items.

Tally Marks: Still used today when
counting by hand.

Language: Earliest languages included
words for small quantities but were
not able to count large quantities.

A stone some archaeologists believe to
be engraved with tally marks, dated to
at least 70,000 years old.
(Chip Clark, Smithsonian Institution)

http://humanorigins.si.edu/evidence/behavior/recording-information/blombos-ocher-plaque

First Functional Numeral Systems
Egyptian (3000 BCE): Base 10 with
hieroglyphics for one, ten, hundred,
thousand, etc. You write as many as
you need to sum to your quantity.

Babylonian (2100 BCE): Base 60 with
groups of numerals representing the
number of ones, 60s, 3600s, and so on.

Mayan (ca. 300 CE): Base 20 positional
system; first system with a zero digit.

An abacus was used
for performing
calculations before
the development of
the positional decimal
numeral system.
(1911 textbook
illustration,
https://flic.kr/p/owaP8C)

Indo-Arabic Numeral System
Developed in India around 500 CE.

Base 10 “positional” numbering
system: unique symbols for 0 through
9, with positions corresponding to
powers of ten.

Adopted by the Arabs and then by the
Europeans. The printing press
established Indo-Arabic as the
dominant numeral system in the West. Brahmagupta, a dybuck (Indian astronomer), is

credited with inventing the concept of zero.
Shown here is an 1885 illustration of a dybuck.

https://books.google.ch/books?id=85UDAAAAQAAJ&pg=PA318

Numbers in Unicode

Scripts and Numbering Systems
Most scripts throughout the world include the ten
Indo-Arabic numerals. Some scripts include two or
more variants.

Unicode calls each set of numerals a “numbering
system”.

Indo-Arabic Numbering Systems

Most numbering systems are named after their ISO 15924 script code.

latn

Indo-Arabic Numbering Systems

And more! (Sorry if I didn’t include your favorite)

"arab"
"arabext"

Facts about Indo-Arabic numerals
1. All numerals have Unicode properties including a numeric value

2. Contiguous: digit 0 at code point x → digit 1 at code point x+1

3. Usually in same encoding block as corresponding script

4. Most significant digit usually on the left
a. Including Arabic, an otherwise right-to-left script
b. Some exceptions (e.g., Adlam)

5. Majority of CLDR locales use Latin-script digits as default

6. Not necessarily in the basic multilingual plane

Algorithmic Numbering Systems
Unicode calls all non-Indo-Arabic numbering systems
“algorithmic.” These numbering systems are sometimes used
in formal or financial contexts. Examples:

Unicode Name 39 500 2017

roman XXXIX D MMXVII

hant 三十九 五百 二千零一十七

cyrl л҃ѳ ф҃ ҂вз҃і

taml ௩௰௯ ௫௱ ௨௲௰௭

Others include: Armenian, Ethiopic, Greek, Georgian, Hebrew, Japanese, and variants.

Locale Patterns and Symbols

Different characters have different semantic
meanings by locale.

Check the CLDR Charts!

http://www.unicode.org/cldr/charts/latest/ , . ’
Number Formatting in ICU

Formatting: binary to
human-readable

Parsing: human-readable
to binary

Two aspects of number processing on a computer:

Today's
Talk

Two APIs for Number Formatting
DecimalFormat

Dates to the original libraries from Taligent and IBM in the mid-1990s.
A foundational i18n API, laying the groundwork JDK, EcmaScript, and others.

NumberFormatter
The first major overhaul of number formatting APIs in ICU.
Newly released in ICU 60.

Today, I will introduce NumberFormatter.

Real DecimalFormat Call Site (Java)

static DecimalFormat percent = (DecimalFormat)
 NumberFormat.getPercentInstance();
static {
 percent.setMaximumFractionDigits(6);
 percent.setPositivePrefix("+");
}

Locale-unaware plus sign code point
and position

The need for a cast is ugly

The locale is defaulted and fixed to the
Java system locale, which is not normally
recommended (except on Android); also
encourages the inefficient “create &
destroy” pattern

Real DecimalFormat Call Site (C++)

auto* format = dynamic_cast<icu::DecimalFormat*>
 (icu::NumberFormat::createCurrencyInstance(error));
format->setRoundingIncrement(0.0);
auto symbols = *(format->
 getDecimalFormatSymbols());
symbols.setSymbol(
 icu::DecimalFormatSymbols::kCurrencySymbol, "");
format->setDecimalFormatSymbols(symbols);
format->applyPattern("#,##0.000000", error);

A lot of code to create a formatter that uses currency symbols to
display a number to 6 decimal places, which should be simple

Locale-unaware grouping size
Heap allocation overhead getting
and setting DecimalFormatSymbols

What does this mean? (Clunky way
to say that you don't want currency
increment rounding rules)

In just two call sites,
that’s a lot of issues!

Can we do better?

What inspired NumberFormatter?
DecimalFormat’s design has limitations which have become more apparent over the
last 20 years of advances in language design and demands for number formatting.

● Not designed for multicore architectures
● Difficult to specify certain options in a locale-agnostic way

○ Methods such as setPositivePrefix() and setGroupingSize() are intrinsically locale-dependent
○ A new object is required for every locale, particularly problematic on servers

● Awkward behaviors: can’t be fixed because of backwards compatibility
● API clutter: over 30 settings, many of which overlap or are obsolete
● ICU4C depends on heap allocation and does not take advantage of language and

compiler advances
● Formatting and parsing are intertwined, when in practice the needs are different

NumberFormatter Design
Well over 100 call sites of DecimalFormat were analyzed to see how programmers
interacted with the old API. This led to the following goals:

Locale: Settings should be locale-agnostic, so you can choose to specify your locale
during application startup (good on devices) or at the final call site (good on servers).

Orthogonality: NumberFormatter settings should be orthogonal to the greatest
extent possible: the choice on one setting should not affect the behavior of other
settings.

Thread Safety: All objects should be immutable and thread-safe. Settings could be
given in a “fluent chain,” a design pattern popularized by Google Guava.

Fluent Pattern
Settings are chained, and each intermediate element in the chain is a functional,
immutable formatter object. Easy to use and no thread safety problems.
NumberFormatter.with() // => UnlocalizedNumberFormatter
 .settingA(...) // => UnlocalizedNumberFormatter
 .settingB(...) // => UnlocalizedNumberFormatter
 .locale(...) // => LocalizedNumberFormatter
 .settingC(...) // => LocalizedNumberFormatter
 .format(...) // => FormattedNumber
 .toString(); // => String

NumberFormatter::with() // => UnlocalizedNumberFormatter
 .settingA(...) // => UnlocalizedNumberFormatter
 .locale(...) // => LocalizedNumberFormatter
 .format(..., ec) // => FormattedNumber
 .toString(); // => UnicodeString

Java

C++
Note: everything returns by value!
(uses C++ return-value optimization)

Device vs. Server Usage

private static final LocalizedNumberFormatter formatter =
 NumberFormatter.withLocale(Locale.getDefault())
 .settingA(...)
 .settingB(...);

// Call site:
formatter.format(...).toString();

private static final UnlocalizedNumberFormatter formatter =
 NumberFormatter.with()
 .settingA(...)
 .settingB(...);

// Call site:
formatter.locale(...).format(...).toString();

Device Pattern

Server Pattern

Setting 1: Notation

Options:

● Scientific
● Engineering
● Compact (Short)
● Compact (Long)
● Simple

Future Possibilities:

● Spell-out / algorithmic (#13401)
● Range-dependent notation

(#13403)

NumberFormatter.with()

.notation(Notation.compactShort())

.locale(new ULocale("ru"))

.format(-980651.4237)

.toString();

-981 тыс.

"Notation" not needed if
compactShort() is
static-imported

Notice new default rounding
strategy for compact notation
(affects old API!)

Setting 2: Rounding

Options:

● Fraction length
● Significant digits/figures
● Increment
● Currency rounding
● Unlimited precision (no rounding)

Note: this setting alone accounts for 9
overlapping getters and setters in
DecimalFormat

NumberFormatter.with()

.rounding(Rounder.fixedFraction(2))

.locale(new ULocale("ru"))

.format(-980651.4237)

.toString();

-980 651,42

"Rounder" not needed if
fixedFraction() is
static-imported

Setting 3: Unit

Options:

● Percent/Permille
● Currency
● Measure unit
● None

Note: In DecimalFormat, you pick a
"style", which mixes notation with unit
and prevents certain combinations like
scientific with percent.

NumberFormatter.with()

.unit(NoUnit.percent())

.locale(new ULocale("ru"))

.format(-980651.4237)

.toString();

-980 651,4237 %

"NoUnit" not needed if
percent() is
static-imported

For consistency with other
units, no multiplying by 100
(old API still multiplies)

Setting 4: Integer Width

Options:

● Zero-Fill To
○ i.e., "minimum integer digits"

● Truncate At
○ i.e., "maximum integer digits"

Can be used to render numbers at a
fixed width. Included because this
feature was somewhat popular with
current users.

NumberFormatter.with()

.integerWidth(
 IntegerWidth.zeroFillTo(4))
.locale(new ULocale("bn"))
.format(9.806514237)
.toString();

০,০০৯.৮০৬৫১৪

"IntegerWidth" not
needed if zeroFillTo() is
static-imported

Note: default rounding is 6
fraction places, consistent
with the C standard for printf

Setting 5: Symbols

Options:

● DecimalFormatSymbols
● NumberingSystem

DecimalFormatSymbols is a
wrapper over NumberingSystem
that adds additional locale data,
so it makes sense to put these
into one setter.

NumberFormatter.with()

.symbols(NumberingSystem.LATIN)

.locale(new ULocale("bn"))

.format(9806514.237)

.toString();

98,06,514.237

"NumberingSystem"
not needed if LATIN
is static-imported

Locale still affects grouping size
and other parts of the pattern

Setting 6: Unit Width

Options:

● Narrow
● Short (default)
● Full Name
● ISO Code
● Hidden

Naming is as consistent as possible
with CLDR.

NumberFormatter.with()

.unit(Currency.getInstance("JPY"))

.unitWidth(UnitWidth.FULL_NAME)

.locale(new ULocale("ar"))

.format(980.6514237)

.toString();

٩٨١ ین یاباني

"UnitWidth" not needed
if FULL_NAME is
static-imported

Currency rounding used by default,
but can be easily overridden by the
rounding() setter

Setting 7: Sign Display

Options:

● Automatic
● Always Shown
● Never Shown
● Accounting
● Accounting-Always

NumberFormatter.with()

.sign(SignDisplay.ALWAYS)

.locale(new ULocale("ne"))

.format(980651.4237)

.toString();

+९८०,६५१.४२३७

Sign is localized if necessary
and put in the correct position
(before/after number)

Setting 8: Decimal Separator Display

Options:

● Automatic
● Always Shown

Affects numbers without a
fraction part.

NumberFormatter.with()

.decimal(
 DecimalSeparatorDisplay.ALWAYS)
.locale(new ULocale("dz"))
.format(9806514237L)
.toString();

༩,༨༠,༦༥,༡༤,༢༣༧.

Future Settings
Didn't make it into 60 but may be added in 61 or later:

● Grouping strategy (technical preview in 60)
○ How to control locale-sensitive minimum grouping digits?

● Padding
○ Integer width covers the biggest use case
○ Some users may want DecimalFormat-style padding with a custom character

● Range formatting
○ "1-3 meters"
○ "~5%"

● Other suggestions? File a ticket on ICU Trac.

FormattedNumber?
Calling .format() returns FormattedNumber, which has the following methods:

● toString()
● appendTo(appendable)
● populateFieldPosition(fp[, status])
● getFieldIterator() -- Java
● populateFieldPositionIterator(fpi, status) -- C++
● toBigDecimal() -- Java

NumberFormatter is
Self-Regulating

On a NumberFormatter:

First/Second .format():
Regular code path.
Third .format(): Slow code
path, building structures.
Fourth+ .format(): Fast
code path, using the
structures built in call 3.

Reproduce these results:

https://pastebin.com/6V6EiXbe

Data Structure
Building

Parameter Resolution,
Locale Data Loading

Formatting

Live Demo

https://goo.gl/2N2Xcq

FAQ
Q: If my old code uses DecimalFormat,
do I need to update it?

A: DecimalFormat is still here and has
partly become a wrapper over
NumberFormatter. The API is intended
for new code and as another option
when refactoring old code.

Q: What about Parsing?

A: This API is focused on formatting.
In an upcoming release, we may
propose a separate "NumberParser"
API for parse users.

FAQ
Q: I don't use Java or C++; can I still
use NumberFormatter?

A: There are wrappers over ICU in all
major languages, including Python, C#,
PHP, JavaScript, and others. As soon
as those package are updated, you
should have access to
NumberFormatter.

Q: I want more information or have a
suggestion; where can I ask?

A: Open a ticket on ICU Trac.
http://bugs.icu-project.org/trac/newticket
Also consider reading the design doc for
NumberFormatter, which goes into much
more depth on many of the issues in this
presentation.
http://goo.gl/GyyF2s

Questions?

You can contact me at http://shane.guru

