
Integrating the development of 
encoding, font, and keyboard

Norbert Lindenberg

© Norbert Lindenberg 2018



Problem 1: Mongolian

• 1999: Mongolian in Unicode 3.0 

• 2018: The Mongolian script: What’s going on?

 2



Problem 2: Myanmar

• 1999: Unicode 3.0 – Burmese only 

• 2002: Myazedi; 2006: Zawgyi – hacked Unicode 

• 2008: OpenType (mymr), HarfBuzz 

• 2008: Unicode 5.1 – minority languages 

• 2013: OpenType (mym2), Windows 8.1 

• 2018: Fixing Burmese: Dealing with Zawgyi

 3



Problem 3: Khmer
• 1999: Unicode 3.0 

• 2002/2007: OpenType 

• 2018: What’s a valid Khmer syllable? 

• Unicode: B {R | C} {S {R}}* {{Z} V } {O} {S} 

• OpenType: Cons + {COENG + (Cons | IndV)} 
+ [PreV | BlwV] + [RegShift] + [AbvV] + 
{AbvS} + [PstV] + [PstS]

 4



Problem 3: Khmer

• Khmer syllable according to Unicode:  
(Cons | IndV) [R | RegShift] {COENG (Cons | 
IndV) [R]} [[Z] (PreV | BlwV | AbvV | PstV)] 
[AbvS | PstS] [COENG (Cons | IndV)] 

• Khmer syllable according to OpenType: 
Cons {COENG (Cons | IndV)} [PreV | BlwV] 
[RegShift] [AbvV] {AbvS} [PstV] [PstS]

 5



Script encoding 
process

• Various people write character proposals 

• UTC and WG2 accept or reject proposals 

• UTC and editorial committee produce Standard & 
data 

• Various people try to implement fonts, keyboards, 
supporting libraries 

• Eventually Microsoft defines OpenType rules 

• More people create fonts based on OpenType

 6



Unicode proposals
• Show characters to be encoded 

• Come with font that’s just good enough to 
create proposal 

• Have some information about usage, but 
rarely enough to create functional font 

• Do not come with keyboard 

• Have some data, but not enough for libraries

 7



Other standards 
processes

• IETF: Rough consensus and running code 

• W3C: Implementation experience is required 

• Ecma TC39: Two compatible 
implementations passing acceptance tests 

 8



Making a complex 
script work

• Font; font technology 

• Keyboard; keyboard framework 

• Rules for line breaking; maybe with dictionary 

• Definition of units for selection, deletion 

• Comparison rules for search 

• Comparison rules for sorting

 9



Making a complex 
script work

• Font; font technology 

• Keyboard; keyboard framework 

• Rules for line breaking; maybe with dictionary 

• Definition of units for selection, deletion 

• Comparison rules for search 

• Comparison rules for sorting

 10



Fonts



Why is it complicated?

င ◌် ◌္ ခ ◌ျ ◌ိ ◌ု 
◌င်္  ခ ◌ျ ◌ိ ◌ု 
ခ ◌င်္  ◌ျ ◌ိ ◌ု 
ခ ◌င်္  ◌ျု ◌ိ 

ခင်္ ျို



What’s needed

• Complete specification of structure of valid 
clusters 

• Complete specification of required shaping 

• Description of common presentation 
choices 

• Compilation of these specifications into 
fonts

 13



Khmer clusters?

(Cons | IndV | GB) [RobatGroup | ([CoengGroup] 
[TailGroup]) ] 

RobatGroup: R ([PreV | BlwV | PstV] | PstS) 

CoengGroup: (BlwC [BlwC | PstC | PreC]) | (PstC 
[PstC | PreC]) | PreC 

TailGroup: [RegShift] [[[PreV | BlwV | AbvV] [AbvS] 
[PstV] [AbvS] [PstS]] | [PstV [AbvS] (BlwC | PstC)]]

 14



Myanmar 
required shaping

sub nga asat virama by kinzi 

sub kinzi @bases by $2 $1 

sub yaMedial u' by u.post ignoring 
@above_base

 15



Implementation

• Apple Advanced Typography – iOS and 
macOS; maybe soon in HarfBuzz 

• Graphite – Firefox 

• OpenType once Universal Shaping Engine 
works for the script – everywhere 

• Compile validation and shaping rules to rule 
languages for these technologies

 16



Keyboards



Why is it complicated?

င ◌် ◌္ ခ ◌ျ ◌ိ ◌ု 
◌င်္  ခ ◌ျ ◌ိ ◌ု 
ခ ◌င်္  ◌ျ ◌ိ ◌ု 
ခ ◌င်္  ◌ျု ◌ိ 

ခင်္ ျို

Unicode →

User level 
components →

Display →



Issues

• Unicode characters are not always the text 
units that users perceive 

• Users don’t always type characters in the 
order Unicode and OpenType expect 

• Users know nothing about Unicode 
normalization

 19



Opportunities

• On mobile devices, keyboards show user 
what they can type 

• No need to map to Latin 

• Keyboards can maintain context, reorder 
and fix input

 20



Formal description

• Latest version of Locale Data Markup 
Language for keyboards includes reordering, 
support for multi-character units 

• Behavior can be specified separately from 
layout

 21



Keyman

• Cross-platform keyboard framework for 
Windows, Android, iOS, macOS, web 

• Started by Tavultesoft, acquired by SIL 
International 

• Roadmap targets LDML support for version 
12, early 2019

 22



Testing 

• Provide users with fonts and keyboards 

• Android: font packaged into app with 
editor 

• Other platforms: Installable for use in any 
app 

• Watch how well they meet their needs

 23



Compatibility

• Encoding may need to change in response 
to test results 

• Might use private use area during testing to 
avoid compatibility issues 

• But: Shaping fails on Windows with private 
use area fonts 

 24



Example: Kawi

• Brahmic script from Java, used 8th – 15th 
century in much of today’s Indonesia and 
parts of Philippines 

• Preliminary Unicode proposal from 2012 

• Implemented here in PUA, U+F1DB0–F1DFF, 
on iOS using AAT 

• Font design by Aditya Bayu Perdana

 25



󱷕󱷡󱷩󱷑%󱶾󱷍󱷣󱷂*󱷙󱷡󱶾



Discuss.



Fonts used
• Sanomat Burmese and Khmer 

Sanomat Burmese and Khmer extensions produced by The Fontpad Ltd. 
Project management, technical support and feedback by Ben Mitchell. Design 
by Mark Frömberg and Natalie Rauch. Khmer consultancy by Sovichet Tep. 
Engineering by Norbert Lindenberg. Original Latin design by Vincent Chan 
and Christian Schwartz at Commercial Type. Thai extension by Smich Smanloh 
at Cadson Demak. 

• Kawi demo 
Design by Aditya Bayu Perdana. Engineering by Norbert Lindenberg. 

• Myriad Pro 
Design by Robert Slimbach and Carol Twombly at Adobe Systems Inc.

 28


