
Making the Korean and Japanese web beautiful & fast
한국어�웹을�아름답고�빠르게
高速で美しい日本語のウェブを

What is "Google Fonts"?

● Free, open-source, font collection

● Free, public, content delivery

● We want to serve all Google users

Proprietary + Confidential

What is "Google Fonts"?

● Free, open-source, font collection

● Free, public, content delivery

● We want to serve all Google users

Proprietary + Confidential

What does Google Fonts DO?

● Maintain & publish collection

● Web API for our collection

● Android API for our collection

● Helps maintain tools and supporting
technologies

Proprietary + Confidential

No CJK Support :(

● Blocked due to latency for a long time

● We had Early Access (beta) support

Proprietary + Confidential

Imagery

Korean is live on
Google Fonts!
25 korean font families are now
available on fonts.google.com

Imagery

Japanese is live
on Google Fonts!
8 japanese font families are now
available on fonts.google.com

Imagery Google Docs ftw
Japanese and Korean fonts available in Google Docs!

What took so long?

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

가각갂갃
간갅갆갇
갈갉갊갋
갌갍갎갏
감갑값갓
갔강갖갗
갘같갚갛
개객갞갟
갠갡갢갣
갤갥갦갧
갨갩갪갫
갬갭갮갯
갰갱갲갳
갴갵갶갷
갸갹갺갻
갼갽갾갿
걀걁걂걃
걄걅걆걇
걈걉걊걋
걌걍걎걏
걐걑걒걓
걔걕걖걗
걘걙걚걛

一二三四
五六七八
九十百千
上下左右
中大小月
日年早木
林山川土
空田天生
花草虫犬
人名女男
子目耳口
手足見音
力気円入
出立休先
夕本文字
学校村町
森正水火
玉王石竹
糸貝車金
雨赤青白
数多少万
半形太細
広長点丸

● High cost per character

● Lots of characters

● We want a CSS solution

● Browser features

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

가각갂갃
간갅갆갇
갈갉갊갋
갌갍갎갏
감갑값갓
갔강갖갗
갘같갚갛
개객갞갟
갠갡갢갣
갤갥갦갧
갨갩갪갫
갬갭갮갯
갰갱갲갳
갴갵갶갷
갸갹갺갻
갼갽갾갿
걀걁걂걃
걄걅걆걇
걈걉걊걋
걌걍걎걏
걐걑걒걓
걔걕걖걗
걘걙걚걛

一二三四
五六七八
九十百千
上下左右
中大小月
日年早木
林山川土
空田天生
花草虫犬
人名女男
子目耳口
手足見音
力気円入
出立休先
夕本文字
学校村町
森正水火
玉王石竹
糸貝車金
雨赤青白
数多少万
半形太細
広長点丸

What took so long?

● High cost per character

● Lots of characters

● We want a CSS solution

● Browser features

What took so long?

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

가각갂갃
간갅갆갇
갈갉갊갋
갌갍갎갏
감갑값갓
갔강갖갗
갘같갚갛
개객갞갟
갠갡갢갣
갤갥갦갧
갨갩갪갫
갬갭갮갯
갰갱갲갳
갴갵갶갷
갸갹갺갻
갼갽갾갿
걀걁걂걃
걄걅걆걇
걈걉걊걋
걌걍걎걏
걐걑걒걓
걔걕걖걗
걘걙걚걛

一二三四
五六七八
九十百千
上下左右
中大小月
日年早木
林山川土
空田天生
花草虫犬
人名女男
子目耳口
手足見音
力気円入
出立休先
夕本文字
学校村町
森正水火
玉王石竹
糸貝車金
雨赤青白
数多少万
半形太細
広長点丸

Cheap to transfer (52 pts) Expensive to transfer (147 pts)

● High cost per character

● Lots of characters

● We want a CSS solution

● Browser features

What took so long?

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

가각갂갃
간갅갆갇
갈갉갊갋
갌갍갎갏
감갑값갓
갔강갖갗
갘같갚갛
개객갞갟
갠갡갢갣
갤갥갦갧
갨갩갪갫
갬갭갮갯
갰갱갲갳
갴갵갶갷
갸갹갺갻
갼갽갾갿
걀걁걂걃
걄걅걆걇
걈걉걊걋
걌걍걎걏
걐걑걒걓
걔걕걖걗
걘걙걚걛

一二三四
五六七八
九十百千
上下左右
中大小月
日年早木
林山川土
空田天生
花草虫犬
人名女男
子目耳口
手足見音
力気円入
出立休先
夕本文字
学校村町
森正水火
玉王石竹
糸貝車金
雨赤青白
数多少万
半形太細
広長点丸

● Many US sites fit Basic Latin

● Going to Europe? Extended Latin

Lots of characters

● Off we go to Greece, still fine

● Generally ≤ 1,000 characters

Lots of characters

● On to Seoul

● latin ≤ 1,000 characters

● korean > 10,000 characters

Lots of characters

● Tokyo

● Even more complex characters

● > 10,000 characters

Lots of characters

● High cost per character

● Lots of characters

● We want a CSS solution

● Browser features

What took so long?

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

가각갂갃
간갅갆갇
갈갉갊갋
갌갍갎갏
감갑값갓
갔강갖갗
갘같갚갛
개객갞갟
갠갡갢갣
갤갥갦갧
갨갩갪갫
갬갭갮갯
갰갱갲갳
갴갵갶갷
갸갹갺갻
갼갽갾갿
걀걁걂걃
걄걅걆걇
걈걉걊걋
걌걍걎걏
걐걑걒걓
걔걕걖걗
걘걙걚걛

一二三四
五六七八
九十百千
上下左右
中大小月
日年早木
林山川土
空田天生
花草虫犬
人名女男
子目耳口
手足見音
力気円入
出立休先
夕本文字
学校村町
森正水火
玉王石竹
糸貝車金
雨赤青白
数多少万
半形太細
広長点丸

● API aims for simplicity
and ease of use

● Should work like any
other font

● Allows us to deploy
ongoing optimizations
transparently

CSS only, no API changes

We want a CSS solution

● 71% of web pages on httparchive.org use fonts
○ Trend toward more and larger fonts
○ https://httparchive.org/reports/page-weight

● Most pages use a small set of characters

● Cut fonts into pieces, let user pick

● Doesn't work for CJK

● Subsets are prohibitively large

Proprietary + Confidential

We want a CSS solution: subsetting

● High cost per character

● Lots of characters

● We want a CSS solution

● Browser features

What took so long?

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

가각갂갃
간갅갆갇
갈갉갊갋
갌갍갎갏
감갑값갓
갔강갖갗
갘같갚갛
개객갞갟
갠갡갢갣
갤갥갦갧
갨갩갪갫
갬갭갮갯
갰갱갲갳
갴갵갶갷
갸갹갺갻
갼갽갾갿
걀걁걂걃
걄걅걆걇
걈걉걊걋
걌걍걎걏
걐걑걒걓
걔걕걖걗
걘걙걚걛

一二三四
五六七八
九十百千
上下左右
中大小月
日年早木
林山川土
空田天生
花草虫犬
人名女男
子目耳口
手足見音
力気円入
出立休先
夕本文字
学校村町
森正水火
玉王石竹
糸貝車金
雨赤青白
数多少万
半形太細
広長点丸

● Rewrite parts of the font to be smaller

● Compress with Brotli

● 25–30% smaller than Zip

Nanum Gothic.ttf, 4.2MB

Nanum Gothic.zip, 2.3MB

Nanum Gothic.woff2, 1.7MB

Browser features: WOFF2

● It's good … but not good enough for CJK

Nanum Gothic.ttf, 4.2MB

Nanum Gothic.zip, 2.3MB

Nanum Gothic.woff2, 1.7MB

← Roboto Basic Latin.woff2, 0.02 MB

Browser features: WOFF2

http://fonts.googleapis.com/css?family=Merriweather

/* cyrillic */
@font-face
 font-family: 'Merriweather';
 src: url(http://fonts.gstatic.com/s/merriweather/cyrillic.woff2);
 unicode-range: U+0400-045F;

/* latin */
@font-face
 font-family: 'Merriweather';
 src: url(http://fonts.gstatic.com/s/merriweather/latin.woff2);
 unicode-range: U+0000-00FF;

Browser features: unicode-range

http://fonts.googleapis.com/css?family=Merriweather

/* cyrillic */
@font-face
 font-family: 'Merriweather';
 src: url(http://fonts.gstatic.com/s/merriweather/cyrillic.woff2);
 unicode-range: U+0400-045F;

/* latin */
@font-face
 font-family: 'Merriweather';
 src: url(http://fonts.gstatic.com/s/merriweather/latin.woff2);
 unicode-range: U+0000-00FF;

Download this

Browser features: unicode-range

http://fonts.googleapis.com/css?family=Merriweather

/* cyrillic */
@font-face
 font-family: 'Merriweather';
 src: url(http://fonts.gstatic.com/s/merriweather/cyrillic.woff2);
 unicode-range: U+0400-045F;

/* latin */
@font-face
 font-family: 'Merriweather';
 src: url(http://fonts.gstatic.com/s/merriweather/latin.woff2);
 unicode-range: U+0000-00FF;

Download this

If the page uses this

Browser features: unicode-range

http://fonts.googleapis.com/css?family=Merriweather

/* cyrillic */
@font-face
 font-family: 'Merriweather';
 src: url(http://fonts.gstatic.com/s/merriweather/cyrillic.woff2);
 unicode-range: U+0400-045F;

/* latin */
@font-face
 font-family: 'Merriweather';
 src: url(http://fonts.gstatic.com/s/merriweather/latin.woff2);
 unicode-range: U+0000-00FF;

Download this

If the page uses this

Download this

If the page uses this

Browser features: unicode-range

time

https://developers.googleblog.com/2015/02/smaller-fonts-with-woff-20-and-unicode.html

Fo
nt

 b
yt

es
Browser features: WOFF2 + unicode-range

Website 1 Website 2 Website 3

Browser Cache

Roboto-Thin.woff2

● Key benefit of centrally hosted fonts

● Less downloads as a font gets used
more

● Our stats suggest this is very effective

Browser features: cross-site caching

● HTTP/1.1 queues aggressively
○ < 10 fragments should be actively used

● HTTP/2 is more concurrency-enthused
○ 10's of fragments can be actively used

Browser features: HTTP/2

{Chrome, Firefox, Safari, Edge}

● unicode-range

● WOFF2

● HTTP/2

Browser features: Critical Mass

1. Cut the fonts into lots of
pieces

2. Tell the browser about the
pieces via unicode-range

Great! How exactly do you want
those fonts segmented?

Proprietary + Confidential

How do we ship Korean?

The YouTube page added only 5 more unique characters.

We should gather this type of data for a large set of Korean web pages!

Page Total
characters

Unique
Characters

News site > 50K 729

YouTube video + comments 1,848 394

Combined > 50K 734

Korean in use:
extremely skewed toward popular characters

● Define "Korean"
○ Set of characters
○ 17.4k total

● Look at usage
○ Google indexes the web
○ Examine a set of Korean

samples

Proprietary + Confidential

Define problem space
+ data source

● Find the set of characters
used on each sample page
○ Ignore multiple uses

on same page

● Count # of pages using
each character

Proprietary + Confidential

Character #Pages Description
0xB2E4 92 다 HANGUL SYLLABLE DA
0xC758 0 의 HANGUL SYLLABLE YI
0xB300 4012 대 HANGUL SYLLABLE DAE
...17k more...

Examine data

Frequency of Korean characters
Examined millions of Korean web pages

Proprietary + Confidential

Great! How exactly do
you want those fonts
segmented?

Do Nothing

● Ship the whole font in a single segment

● Provides baseline for comparison

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

One giant font file

Ways to segment

Equal Bins

● Sort by codepoint

● Divide into 100 equal size groups

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

...

Sort by codepoint

Ways to segment

Frequency

● Sort by usage frequency

● Make 100 equal size groups

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

2000 1000 ...
Sort by frequency

Ways to segment

Hybrid sort

● Take two big blocks based on frequency

● Sort the rest by codepoint, make equal size groups

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

2000 1000
Sort leftovers by codepoint

...

Sort by frequency

Ways to segment

Learned Sort

● Take two big blocks based on frequency

● Organize the rest using a topic model and a genetic
algorithm

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

2000 1000
Sort by magic

...

Sort by frequency

Ways to segment

● Fewer bytes transferred is better

● Fewer fonts used is better

These two goals can be at odds with each other

How do we compare segmentation strategies?

Number of segments

One font file per
character

All characters in
one file

Loading
time

Delay for
transferring

bytes

Number of segments

One font file per
character

All characters in
one file

Loading
time

Delay for
transferring

bytes

Delay from
network,
rendering
overhead

Number of segments

Loading
time

One font file per
character

All characters in
one file

Total loading time

Delay for
transferring

bytes

Delay from
network,
rendering
overhead

● Simulations and cost functions are fun

● Live testing is better
○ What if your cost function is wrong?

● We have N strategies we think might work
○ Send Y% of production traffic to each one
○ Let it run for a while
○ Measure and compare!

● Save >= 60% of bytes vs baseline to win

Test to find the best strategy

Results: Hybrid Sort is the winner

Saved from both font data and CSS (higher is better)

% Improvement

Good

Better

Best

● Outperformed more complex
strategies.

● Provides a good tradeoff between bytes
transferred and number of font requests.

Sometimes simpler is better A few big segments + many smaller
segments works surprisingly well

At this point we shipped Korean, much rejoicing :)

What we learned

Korean fonts
announced

Korean adoption

From fonts.google.com:

Number of times Google Fonts API served
Nanum Gothic over the last week. Nanum
Gothic is featured in more than 20,000
websites.

384M

Korean usage

● Hybrid Sort is king of the hill
○ we can do better

I have this
tiny problem

where I always
want more

Round 2, fight!

Is 3000 too many? Too few?

Consider
More high-frequency subsets (HTTP/1 vs HTTP/2)
Changing the boundary between high- and low-frequency codepoints

Keep
Low-frequency characters ordered by codepoint … smaller CSS

How many high-frequency codepoints?

Adjust the high-frequency boundary: 1000, 2000

More aggressively subset high-frequency codepoints
10 and 20 subsets, rather than 2

Reminder: the baseline is Hybrid Sort

Spoiler alert: improved by 29 - 38% more … nice!

ROUND

2

Next batch of experiments

Experiments: 10 and 20 subsets

Conclusion: more high-frequency subsets performed better

0% 10% 20% 30%

29

34

% Improvement

10 Subsets

20 Subsets

High frequency line at 3,000

Experiments: 10 and 20 subsets

10 Subsets 31

0% 10% 20%

20 Subsets 35

30%
% Improvement

Conclusion: more high-frequency subsets performed better

High frequency line at 1,000

0% 10% 20% 30%

10 Subsets 33

20 Subsets 38

% Improvement

Conclusion: more high-frequency subsets performed better

Experiments: 10 and 20 subsets

High frequency line at 2,000

31

0% 10% 20% 30%

1000

34

29

35

33

38

2000

3000

1000

2000

3000

% Improvement
on top of Hybrid Sort

10
 S

ub
se

ts
20

 S
ub

se
ts

Overall results

Combining rounds 1 and 2, we’re saving ~93%

20 subsets always out-performed 10 subsets (regardless of the
high-frequency line)

High-frequency line at 2000 performed best for both 10 and 20 subsets
The best line appears to be somewhere between 1000 and 2000

Conclusions for Korean fonts

Examined the character frequency

Ran similar tests

Reduced the bytes transferred by ~83%
Compared to sending the whole font

On to Japanese

Frequency of Japanese characters on the web

Japanese and Korean frequencies

We shipped Japanese!

Japanese characters are more complex than Korean

Japanese has more high-frequency characters

A high-frequency line of 3000 narrowly outperformed 2000

Conclusions for Japanese fonts

Improve the preferred high-frequency line¹

Refine the # of high-frequency subsets

Equal-sized high-frequency subsets may not be the best¹

¹ Running these experiments right now

Room for improvement

Support Chinese, both simplified and traditional
使中文网络美丽而快速

使中文網絡美麗而快速

Room for improvement

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 A B C D E F J K L M N O P Q R S T U V W

Server: Hey buddy, here's my best guess at how I should cut up this font:

Browser: I need to render "Awesome" so I'll take these pieces:

Problems
● Layout features don't work across segments

○ AW won't kern
○ Indic, Arabic, and others rely heavily on layout

● We still downloaded a lot of stuff we didn't use

Trouble in paradise

A) unicode-range
○ Cut font up, tell browser about pieces
○ This is what we do today
○ WAY better than whole font, but far from optimal
○ User often "pays" for unused codepoints

Transfer options

B) WOFF2 Deltas
○ Each time user needs more codepoints, send a woff2 of the delta
○ Layout will break horribly and unpredictably
○ Not useful, but interesting for size comparison

Transfer options

C) Incremental Transfer
○ Each time user needs more codepoints, send a patch
○ Layout will just work
○ User doesn't "pay" for unused codepoints
○ Currently only achievable with Javascript

Transfer options

D) Send woff2 of exactly what user will need
○ Requires a priori knowledge of content user will view

i) Currently impossible
○ Compute this as "optimal" when comparing other solutions

Transfer options

Imagine we want to render "Awesome" in Montserrat

Trouble in paradise

Next we browse to a page that uses Vietnamese

Trouble in paradise

● HTTP is fine, no new protocol required :)

● Request
○ I have {current codepoints}
○ I need {desired codepoints}

● Response
○ binary patch to desired state

■ If {current codepoints} empty, a WOFF2 of desired state

● One cache key, update when you get a patch

Incremental Transfer: HTTP interaction

Incremental Transfer: Subsetting
● Request

○ I have {current codepoints}
○ I need {desired codepoints}

● To compute patch
current = subset (current codepoints)
desired = subset (desired codepoints)
patch = binary patch (current, desired)

● What luck! We are building a fast subsetter :)
○ Faster Horse, https://github.com/harfbuzz/harfbuzz

https://github.com/harfbuzz/harfbuzz

Incremental Transfer: Patching

Page 1 "Meows"

M

e

o

s

w

Incremental Transfer: Patching

Page 1: "Meows" Page 2: "Awesome"

M

e

o

s

w

A

M

e

m

o

s

w

kern Aw

Incremental Transfer: Patching

Current State Desired State

M

e

o

s

w

A

M

e

m

o

s

w

kern Aw

Incremental Transfer: Patching

Current State Desired State

M

e

o

s

w

A

M

e

m

o

s

w

kern Aw

Patch

insert A

reuse old bytes

insert m

reuse old bytes

insert kern

+ =

Brotli Shared
Dictionary

The Brotli library used by WOFF2 can handle patching

The hb-subset library can be used to do very fast subsetting
Subset <current codeponts> → current
Subset <desired codepoints> → desired
Compress desired using Brotli Shared Dictionary, dictionary = current

Proof of concept: tinyurl.com/incxfer-demo

The WebFonts Working Group is considering writing a standard :)

Let's standardize Incremental Transfer!

https://tinyurl.com/incxfer-demo

Speaker Evaluation
www.unicodeconference.org/eval-sp

References
fonts.google.com
(choose Japanese or Korean from Languages)

tinyurl.com/incxfer-demo

The End. Questions?

