What do Intel's New AVX-512 Instructions Mean for

High-Performance Unicode?

Robert D. Cameron

School of Computing Science
Simon Fraser University

September 11, 2018

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 1/36

@ Introduction to SIMD/AVX-512

© Parabix: Scalable High-Performance Unicode

© Bitwise Data Parallel Regular Expression Matching

@ Programming Framework: Kernels + Stream Sets = Programs
© icgrep Architecture

@ Scalable Performance Results

@ Conclusion

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018

Outline

@ Introduction to SIMD/AVX-512

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 3 /36

What Are Vector Instructions?

Single Instruction Multiple Data (SIMD)

@ Vector instructions implement the SIMD concept.

@ Multiple vector elements are combined in a single operation.

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 4 /36

What Are Vector Instructions?

Single Instruction Multiple Data (SIMD)

@ Vector instructions implement the SIMD concept.

@ Multiple vector elements are combined in a single operation.

4

Example: <4 x 116> Vector Addition

’ Ao | Ay | Ay | As ‘ @ Four 16-bit additions at once.
@ Replaces the loop:
‘\BO ‘\Bl ‘\B2 HB?’ ‘ for (int i=0; i<4; i++) {
C[i] = A[i] + B[il;
}

o Intel paddw MMX instruction.

EICEAE

4

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 4 /36

Two Decades of Intel SIMD Extensions

MMX, SSE, AVX, AVX-512

@ 1997: Intel Pentium processors introduce 64-bit SIMD (MMX).
e 1999: 128-bit floating point SIMD vectors (SSE).
@ 2000: SSE2 adds 128-bit integer vector operations.
o Widespread Intel/AMD standard: all x86-64 processors.
SSE3 (2004), SSSE3 (2005), SSE4 (2008).
256-bit SIMD: Intel AVX (2011), AVX2 (2013).
512-bit SIMD: Intel AVX-512 (2017)

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 5/ 36

Two Decades of Intel SIMD Extensions

MMX, SSE, AVX, AVX-512
@ 1997: Intel Pentium processors introduce 64-bit SIMD (MMX).
1999: 128-bit floating point SIMD vectors (SSE).
2000: SSE2 adds 128-bit integer vector operations.
o Widespread Intel/AMD standard: all x86-64 processors.
SSE3 (2004), SSSE3 (2005), SSE4 (2008).
@ 256-bit SIMD: Intel AVX (2011), AVX2 (2013).
@ 512-bit SIMD: Intel AVX-512 (2017)

Not Just Intel/AMD

e Altivec/VMX (2004): 128-bit SIMD
o ARM Neon (2008): 128-bit SIMD
@ ARM SVE: scalable SIMD up to 2048 bits (in progress)

e o

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 5/ 36

Doubling Register Size, Repeatedly

128-bit SSE2: <8 x 116> Vector Addition

(8o [42 [4o | & [ha [Ao [o [A |

[1Bo |\B1 [1B> |1Bs [[Bs ||Bs | |Bs | |Br |

(o [G €[& [C]G [o]

International Unicode Conference 42 September 11, 2018 6 /36

Doubling Register Size, Repeatedly

128-bit SSE2: <8 x 116> Vector Addition

o [& [A [o [Ra [b5 [Ao [o]

[1Bo |\B1 [1B> |1Bs [[Bs ||Bs | |Bs | |Br |

(o [G €[& [C]G [o]

v

AVX2, AVX-512

@ 256-bit AVX2: <16 x 116> vector addition in a single operation.
@ 512-bit AVX-512: <32 x 116> vector addition in a single operation.

International Unicode Conference 42 September 11, 2018 6 /36

Why SIMD?

@ Intel has added hundreds of SIMD instructions over two decades.

o More SIMD instructions added than any other kind.
o Substantial transistor count, chip area devoted to SIMD.
o Larger cores, so fewer cores per package possible.

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 7 /36

Why SIMD?

SIMD Costs

@ Intel has added hundreds of SIMD instructions over two decades.

o More SIMD instructions added than any other kind.
o Substantial transistor count, chip area devoted to SIMD.
o Larger cores, so fewer cores per package possible.

SIMD Benefits

@ SIMD naturally supports data parallel applications.

o Graphics, signal and image processing.
e Physical simulation.
o Database queries, financial analytics.

@ SIMD has natural advantages over multicore.
o Cost of instruction fetch/decode divided by SIMD vector length.
e SIMD ALUs share common control and data path logic.
e Synchronization of parallel execution is automatic.

v

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 7 /36

What's new in AVX-5127

Several New Instruction Families

o AVX-512F: Foundation - core 32/64 bit operations (extending AVX).
e AVX-512DQ: New doubleword/quadword (32/64-bit) operations.
o AVX-512BW: AVX-2 byte/word operations extended to 512 bits.
o AVX-512VBMI: Full byte-level permutation selecting from 128 bytes.

@ Several additional small families of specialized instructions.

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 8 /36

What's new in AVX-5127

Several New Instruction Families

e AVX-512F: Foundation - core 32/64 bit operations (extending AVX).
e AVX-512DQ: New doubleword/quadword (32/64-bit) operations.
o AVX-512BW: AVX-2 byte/word operations extended to 512 bits.
o AVX-512VBMI: Full byte-level permutation selecting from 128 bytes.

@ Several additional small families of specialized instructions.

Systematic New Features

@ Systematic masking and blending using bitmask registers.

o Constant parameter broadcasting, rounding and exception control.
@ Register count increased from 16 to 32.

@ Ternary logic - all possible 3-bit Boolean functions.

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 8 /36

Opportunity and Challenge

Opportunity
@ Extensive SIMD parallelism offers the potential to dramatically
speed-up applications.
@ The expected speed-up is potentally very large.
@ Considerable data rearrangement overhead can be tolerated.

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 9 /36

Opportunity and Challenge

Opportunity

@ Extensive SIMD parallelism offers the potential to dramatically
speed-up applications.

@ The expected speed-up is potentally very large.

@ Considerable data rearrangement overhead can be tolerated.

Challenge

@ Existing sequential programs generally cannot be autovectorized.

e Too many sequential dependencies between data elements.
e Programmer code optimizations often obscure parallelizable logic.

@ Language technology may limit access to SIMD capabilities.

@ Text processing may involve variable-length items not well-matched to
fixed SIMD field and register widths.

@ Data parallel algorithmic approaches may be hard to find.

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 9 /36

Outline

© Parabix: Scalable High-Performance Unicode

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 10 / 36

Parabix Technology

Parabix Concept

@ Programming framework for high-performance data stream processing.
@ Employs novel algorithms based on bitwise data parallelism.
o Process 128 bytes at a time using 128 bit registers (SSE2).

o Fully utilizes processor wide vector instructions (SIMD).

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 11 / 36

Parabix Technology

Parabix Concept

@ Programming framework for high-performance data stream processing.
@ Employs novel algorithms based on bitwise data parallelism.
o Process 128 bytes at a time using 128 bit registers (SSE2).

o Fully utilizes processor wide vector instructions (SIMD).

o’

Parabix Scalability

@ Parabix scales to use available SIMD register width.

o Intel AVX2 (2013): 256 bytes at a time.
o Intel AVX-512 (2017): 512 bytes at a time.

@ Parabix can also scale to use multiple cores, even on a single data
stream.

@ No changes to application programs required!

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 11 / 36

Regular Expression Showcase: icgrep

icgrep 1.8
o Full-featured grep implementation using Parabix algorithms.
@ Posix REs: Basic or Extended

o All features except backreferences.

@ Perl-compatible REs (PCRE)

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018

Regular Expression Showcase: icgrep

icgrep 1.8
o Full-featured grep implementation using Parabix algorithms.
@ Posix REs: Basic or Extended

o All features except backreferences.

@ Perl-compatible REs (PCRE)

| A

UTS #18 - Unicode Regular Expressions
@ Full Unicode property support.

@ Set operations, e.g., [\p{Greek}&&\p{upper casel}]

@ Grapheme clusters and grapheme cluster mode.

@ Name property with regexp values \p{name=/ATRPLANE/}
o

Canonical and compatible equivalence.

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 12 / 36

Outline

© Bitwise Data Parallel Regular Expression Matching

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 13 / 36

Beyond Byte-At-A-Time

o Traditional regular expression technology processes one code unit at a
time using DFA, NFA or backtracking implementations.

@ Instead consider a bitwise data parallel approach.

@ Byte-oriented data is first transformed to 8 parallel bit streams
(Parabix transform).

@ Bit stream j consists of bit j of each byte.

@ Load 128-bit SIMD registers to process 128 positions at a time in
bitwise data parallel fashion (SSE2, ARM Neon, ...).

@ Or use 256-bit AVX2 registers of newer Intel processors.
@ Process using bitwise logic, shifting and addition.

@ Parabix methods have previously been used to accelerate Unicode
transcoding and XML parsing.

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 14 / 36

Unbounded Stream Abstraction

@ Program operations as if all positions in the file are to be processed
simultaneously.

Unbounded bitwise parallelism.
Pablo compiler technology maps to block-by-block processing.
Information flows between blocks using carry bits.

LLVM compiler infrastructure for Just-in-Time compilation.

Custom LLVM improvements further accelerate processing.

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018

Marker Streams

@ Marker stream M; indicates the positions that are reachable after item
1 in the regular expression.

@ Each marker stream M; has one bit for every input byte in the input
file.

e M;[j] =1 if and only if a match to the regular expression up to and
including item ¢ in the expression occurs at position j — 1 in the input
stream.

@ Conceptually, marker streams are computed in parallel for all positions
in the file at once (bitwise data parallelism).

@ In practice, marker streams are computed block-by-block, where the

block size is the size of a SIMD register in bits.

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 16 / 36

Marker Stream Example

o Consider matching regular expression a[0-9]*[z9] against the input
text below.

input data a453z--b3z--az--a12949z--ca22z7--

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 17 / 36

Marker Stream Example

o Consider matching regular expression a[0-9]*[z9] against the input
text below.

@ Mj marks positions after occurrences of a.

input data a453z--b3z--az--a12949z--ca22z7--
M, A P P 1.....

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 17 / 36

Marker Stream Example

o Consider matching regular expression a[0-9]*[z9] against the input
text below.

@ Mj marks positions after occurrences of a.

@ My marks positions after occurrences of a[0-9] *.

input data a453z--b3z--az--a12949z--ca22z7--
M, A P P 1.....
My B s 1...111111....111. ..

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 17 / 36

Marker Stream Example

o Consider matching regular expression a[0-9]*[z9] against the input
text below.

@ Mj marks positions after occurrences of a.
@ My marks positions after occurrences of a[0-9] *.

@ M3 marks positions after occurrences of a[0-9]*[z9].

input data a453z--b3z--az--a12949z--ca22z7--

M, Ao U DU 1.....
M, 1111, 1...111111....111. ..
My ..., 1o ..., 1..... 1.11...... 1

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 17 / 36

Matching Character Class Repetitions with MatchStar

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 18 / 36

Matching Character Class Repetitions with MatchStar

e MatchStar(M,C)=((MAC)+C)aC)V M

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 18 / 36

Matching Character Class Repetitions with MatchStar

e MatchStar(M,C)=((MAC)+C)aC)V M
e Consider My = MatchStar(M;, C)

input data a453z--b3z--az--a12949z--ca22z7--
M, T P 1oo...
C = [0-9] B I s 11111..... 11.1..

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 18 / 36

Matching Character Class Repetitions with MatchStar

e MatchStar(M,C)=((MAC)+C)aC)V M
e Consider My = MatchStar(M;, C)

@ Use addition to scan each marker through the class.

input data a453z--b3z--az--a12949z--ca22z7--

M, B 1...1.. ..., 1.....
C = [0-9] B I s 11111..... 11.1..
To=M NC B 1......... 1.....
Tih=Ty+C B e 1...... 11..

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 18 / 36

Matching Character Class Repetitions with MatchStar

e MatchStar(M,C)=((MAC)+C)aC)V M
e Consider My = MatchStar(M;, C)
@ Use addition to scan each marker through the class.

@ Bits that change represent matches.

input data a453z--b3z--az--a12949z--ca22z7--

M, B 1...1.. ..., 1.....
C = [0-9] B I s 11111..... 11.1..
To=M NC B 1......... 1.....
Tih=Ty+C B e 1...... 11..
Th=T1oC B e I 111111....111. ..

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 18 / 36

Matching Character Class Repetitions with MatchStar

e MatchStar(M,C)=((MAC)+C)aC)V M

e Consider My = MatchStar(M;, C)

@ Use addition to scan each marker through the class.
@ Bits that change represent matches.

@ We also have matches at start positions in Mj.

input data a453z--b3z--az--a12949z--ca22z7--

M, B 1...1.. ..., 1.....

C = [0-9] B I s 11111..... 11.1..

To=M NC B 1......... 1.....
Tih=Ty+C B e 1...... 11..
Th=T1oC B e I 111111....111. ..
My=ToV My .1111........ 1...111111. .. .111. ..

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 18 / 36

Matching Equations

The rules for bitwise data parallel regular expression matching can be
summarized by these equations.

Match(m,C) = Advance(CharClass(C) A m)
Match(m, RS) = Match(Match(m, R),S)
Match(m, R|S) = Match(m, R) V Match(m, S))
Match(m,Cx) = MatchStar(m, CharClass(C'))
Match(m, Rx) = m V Match(Match(m, R), Rx)

Advance(m) = m+m

)

MatchStar(m,C) = (mAC)+C)dC)Vm

The recursive equation is implemented with a while loop.

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 19 / 36

Outline

@ Programming Framework: Kernels + Stream Sets = Programs

Rob Cameron (SFU) International Unicode Conference 42 September 11, 20 / 36

Stream Sets and Buffers

@ A stream set type is of the form N x iK
o N streams of items, each item of width K = 2% bits

@ All streams in a set are of the same length L (may be unknown).

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 21 /36

Stream Sets and Buffers

Stream Sets

@ A stream set type is of the form N x iK
@ N streams of items, each item of width K = 2F bits

@ All streams in a set are of the same length L (may be unknown).

Buffers are storage for segments of stream sets.

@ All of the streams of a set are stored in a single buffer.
@ Stream sets are stored block-at-a-time (significant for N > 1)
(]

Different buffering strategies.

o Full stream length (mmap)

o Fixed length circular buffer.

o Fixed length buffer with copyback.

e Expanding buffer (expands as needed).

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018

Kernel Structure

o Kernels are computational abstractions for text stream processing.

@ Kernels process input stream sets, producing output stream sets.

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 22 / 36

Kernels

Kernel Structure

o Kernels are computational abstractions for text stream processing.

@ Kernels process input stream sets, producing output stream sets.

v

Transposition Kernel

@ Input: 1 x i8: a single stream of 8-bit code units (e.g., UTF-8).

o Output: 8 x il: a set 8 of parallel bit streams (basis bit streams).

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 22 / 36

Kernels

Kernel Structure

@ Kernels are computational abstractions for text stream processing.

@ Kernels process input stream sets, producing output stream sets.

| A

Transposition Kernel
@ Input: 1 x i8: a single stream of 8-bit code units (e.g., UTF-8).

o Output: 8 x il: a set 8 of parallel bit streams (basis bit streams).

Transposition Subkernels

| A

@ Transposition can actually be divided into 3 stages.
o Stage 1: 1 x i8: to 2 x i4 (2 streams of nybbles).
@ Stage 2: 2 x i4: to 4 x i2 (4 streams of bit-pairs).
o Stage 3: 4 x i2: to 8 x i1 (basis bit streams).

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 22 / 36

Regular Expression Kernels

Character Class Kernels

Kernel for the character classes of a regexp: e.g., a[0-9]* [z9]

@ Input: 8 x il: the 8 basis bit streams.
@ OQutput: 3 x i1: 3 bit streams for [a], [0-9], [z9]
o

Dynamically generated by the Parabix character class compiler (ccc).

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 23 /36

Regular Expression Kernels

Character Class Kernels

@ Kernel for the character classes of a regexp: e.g., a[0-9]*[z9]

@ Input: 8 x il: the 8 basis bit streams.
@ Output: 3 x i1: 3 bit streams for [a], [0-9], [z9]

@ Dynamically generated by the Parabix character class compiler (ccc).

y

Matching Logic Kernels

Kernel for the matching logic: e.g., a[0-9]* [z9]

Input: 3 x i1: character class streams

Output: 1 x il: a bit stream of matches found.

Dynamically generated by the Parabix Regular Expression compiler.

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 23 /36

Modular icgrep Kernels

Line Break Kernel

@ Kernel for Unicode line breaks
@ Input: 8 x i1: the 8 basis bit streams.
@ Output: 1 x i1: line breaks for any of LF, CR, CRLF, LS, PS, ---

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 24 / 36

Modular icgrep Kernels

Line Break Kernel

@ Kernel for Unicode line breaks
@ Input: 8 x i1: the 8 basis bit streams.

@ Output: 1 x i1: line breaks for any of LF, CR, CRLF, LS, PS, ---

Match Scanning Kernel
@ Kernel to generate matched lines.
@ Three inputs:

e 1 x i8: source byte stream
o 1 x il: matches bit stream
e 1 x il: line break bit stream

@ OQutput: 1 x i8 matched line output stream.

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 24 / 36

Kernel Composition: Pipelines

Kernels + StreamSets = Programs

@ Name the stream sets used as inputs and outputs to each kernel.

@ Compose a program as a sequence of kernels.

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 25 / 36

Kernel Composition: Pipelines

Kernels + StreamSets = Programs

@ Name the stream sets used as inputs and outputs to each kernel.

@ Compose a program as a sequence of kernels.

V.

A 7-Stage icgrep Program

ByteData = MMapSource(FileName)
BasisBits = Transpose(ByteData)
LineEnds = UnicodeLineBreaks(BasisBits)

CharacterClasses = CC_compiler<regexp>(BasisBits)
Matches = RE_compiler<regexp>(CharacterClasses)
MatchedLines MatchScanner (ByteData, LineEnds, Matches)
StdoutSink(MatchedLines)

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 25 / 36

Outline

© icgrep Architecture

Rob Cameron (SFU) International Unicode Conference 42 September 11, 20 26 / 36

Parabix Compilation Architecture: icgrep

RegEx
¥
RegEx Parser [« I Parabix Driver
| RegEx Tra:sformations |
RegEx Zompiler
| Pablo Trantformations| | SIMD Detection |
| Pablo Compiler| | Kernel Libraries|
| Pipeline Compiler SIMD I:ibraries|
| LLVM gompiler Object Cache
\Z

Dynamically-Generated Match Function

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 27 / 36

Outline

@ Scalable Performance Results

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 28 / 36

Scalability in Simple String Search

Example: Search for the string "grep”

e Data source: 620 MB Wikibooks document set (15 languages)
@ Boyer-Moore allows grep to skip characters, but IPC poor.
@ icgrep/SSE2 not much faster, but scales up with AVX.

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 29 / 36

Scalability in Simple String Search

Example: Search for the string "grep”

e Data source: 620 MB Wikibooks document set (15 languages)

@ Boyer-Moore allows grep to skip characters, but IPC poor.
@ icgrep/SSE2 not much faster, but scales up with AVX.

Performance Results

Program Processor SIMD Instructions | Time
i7-3770 © 3.4 GHz SSE2 758 M 0.37 s
grep i3-5010U @ 2.1 GHz AVX2 757 M 0.54 s

W-2102 @ 2.9 GHz | AVX-512 756 M 0.44 s
i7-3770 @ 3.4 GHz SSE2 1,515 M 0.30 s
icgrep | i3-5010U @ 2.1 GHz AVX2 903 M 0.26 s
W-2102 @ 2.9 GHz | AVX-512 641 M 0.18 s
W-2102 (2 cores) | AVX-512 643 M 0.12s

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 29 / 36

Case-Insensitive String Search: grep vs. icgrep

Example: Search for the string "find”
Command flag: -i Regex: find
e Data source: 620 MB Wikibooks document set (15 languages)

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 30/ 36

Case-Insensitive String Search: grep vs. icgrep

Example: Search for the string "find”

Command flag: -i Regex: find

e Data source: 620 MB Wikibooks document set (15 languages)

Performance Results

Program Processor SIMD Instructions | Time
i7-3770 @ 3.4 GHz SSE2 4,454 M 1.07 s
grep -i | i3-5010U @ 2.1 GHz | AVX2 4,454 M 1.66 s

W-2102 @ 2.9 GHz | AVX-512 4,453M 141 s
i7-3770 © 3.4 GHz SSE2 3,221 M 0.42 s
icgrep -i | i3-5010U @ 2.1 GHz AVX2 1,860 M 0.43s
W-2102 @ 2.9 GHz | AVX-512 1,181 M 0.28 s
W-2102 (2 cores) AVX-512 1,191 M 0.16 s

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 30/ 36

Unicode Categories: grep vs. icgrep

Example: Upper Case Cyrillic
Regex: [\p{Cyrillic}&&\p{Lu}]
grep (PCRE mode) alternative: \p{Cyrillic}(?<=\p{Lu})
e Data source: 620 MB Wikibooks document set (15 languages)

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 31/ 36

Unicode Categories: grep vs. icgrep

Example: Upper Case Cyrillic

Regex: [\p{Cyrillic}&&\p{Lu}]
grep (PCRE mode) alternative: \p{Cyrillic}(?<=\p{Lu})

e Data source: 620 MB Wikibooks document set (15 languages)

Performance Results

Program Processor SIMD Instructions Time
i7-3770 @ 3.4 GHz SSE2 2,191,635 M | 232.3 s
grep -P | i3-5010U @ 2.1 GHz AVX2 2,191,744 M | 348.0 s
W-2102 @ 2.9 GHz | AVX-512 | 2,191,552 M | 220.8 s
i7-3770 @ 3.4 GHz SSE2 6,678 M 0.85s
icgrep | i3-5010U @ 2.1 GHz AVX2 3,683 M 0.84 s
W-2102 @ 2.9 GHz | AVX-512 2,174 M 0.44 s
W-2102 (2 cores) | AVX-512 2,206 M 0.25s

o’

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 31/ 36

Large Bounded Repetitions

Example: Lines >= 400 Characters
Regex: .{400}
e Data source: 620 MB Wikibooks document set (15 languages)

@ icgrep has log, algorithm.

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 32 /36

Large Bounded Repetitions

Example: Lines >= 400 Characters

Regex: .{400}
e Data source: 620 MB Wikibooks document set (15 languages)

@ icgrep has log, algorithm.

v

Performance Results

Program Processor SIMD Instructions Time
i7-3770 @ 3.4 GHz SSE2 2,372,838 M | 2499 s
grep -E | i3-5010U @ 2.1 GHz AVX2 2,354,380 M | 407.8 s
W-2102 @ 2.9 GHz | AVX-512 | 2,354,065 M | 247.1 s
i7-3770 @ 3.4 GHz SSE2 17,410 M 234 s
icgrep | i3-5010U @ 2.1 GHz AVX2 7,938 M 193 s
W-2102 @ 2.9 GHz | AVX-512 15,135 M 241 s
W-2102 (2 cores) | AVX-512 | 15,268 M 1.27 s

Rob Cameron International Unicode Conference 42 September 11, 2018 32 /36

Nondeterministic Matching

Example: IP address regex

(25[0-5] [2[0-4] [0-9]1 | [01]17[0-9] [0-917)
(\. (25[0-5] [2[0-4] [0-9] | [01] 7 [0-9] [0-9] 7)) {3}

e Data source: 620 MB Wikibooks document set (15 languages)

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 33 /36

Nondeterministic Matching

Example: IP address regex

(25[0-5] [2[0-4] [0-9]1 | [01]17[0-9] [0-917)
(\. (25[0-5] [2[0-4] [0-9] | [01] 7 [0-9] [0-9] 7)) {3}

e Data source: 620 MB Wikibooks document set (15 languages)

Performance Results

Program Processor SIMD Instructions | Time
i7-3770 @ 3.4 GHz SSE2 232,079 M | 213 s
grep -E | i3-5010U @ 2.1 GHz AVX2 232,423 M | 39.5s
W-2102 @ 2.9 GHz | AVX-512 | 232,081 M | 25.6 s
i7-3770 @ 3.4 GHz SSE2 3,720 M 0.49 s
icgrep | i3-5010U @ 2.1 GHz AVX2 2,193 M 0.49 s
W-2102 @ 2.9 GHz | AVX-512 1,349 M 0.32 s
W-2102 (2 cores) | AVX-512 1,388 M 0.20 s

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 33 /36

Emoji Search: icgrep

Example: Search for Smileys
Regex: \p{name=/SMIL(E|ING)/}
e Data source: 620 MB Wikibooks document set (15 languages)

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 34 /36

Emoji Search: icgrep

Example: Search for Smileys
Regex: \p{name=/SMIL(E|ING)/}
e Data source: 620 MB Wikibooks document set (15 languages)

Performance Results

Program Processor SIMD Instructions | Time
i7-3770 @ 3.4 GHz SSE2 4,610 M 0.55 s
icgrep | i3-5010U @ 2.1 GHz | AVX2 2,687 M 0.59 s
W-2102 @ 2.9 GHz | AVX-512 1,795 M 0.38 s
W-2102 (2 cores) | AVX-512 1,820 M 0.23 s

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 34 /36

Outline

@ Conclusion

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2 35/ 36

Final Remarks

AVX-512 Scalability

@ Instruction count drops dramatically, CPU time drops significantly.

@ AVX-512 detection and code generation is automatic for Parabix
applications.

@ Performance improvement is automatic with significant reduction in
both instruction count and execution time in most cases.

o Improvement of core libraries is an ongoing area of work.

Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 36 / 36

Final Remarks

AVX-512 Scalability

@ Instruction count drops dramatically, CPU time drops significantly.

@ AVX-512 detection and code generation is automatic for Parabix
applications.

@ Performance improvement is automatic with significant reduction in
both instruction count and execution time in most cases.

o Improvement of core libraries is an ongoing area of work.

Parabix Platform

o Kernel 4+ Stream Set model is effective for Parabix program design.

@ Kernel library includes transposition and inverse transposition, stream
filtering and stream expansion.

@ Character class and Unicode property compilers.

@ Pipeline compiler supports segmented multicore parallelism

automatically.
Rob Cameron (SFU) International Unicode Conference 42 September 11, 2018 36 / 36

	Introduction to SIMD/AVX-512
	Parabix: Scalable High-Performance Unicode
	Bitwise Data Parallel Regular Expression Matching
	Programming Framework: Kernels + Stream Sets = Programs
	icgrep Architecture
	Scalable Performance Results
	Conclusion

