
Creating fonts for Brahmic
scripts with OpenType and

Apple Advanced Typography
Muthu Nedumaran & Norbert Lindenberg

© 2017-2018 Muthu Nedumaran & Norbert Lindenberg

Agenda

• What are Brahmic scripts?

• Creating glyphs

• Unicode and fonts

• OpenType shaping

• Apple Advanced Typography shaping

 2

What are Brahmic
scripts?

• Scripts derived from Brahmi (~250 BCE)

• India: !वनागरी, বাংলা িলিপ, த"#, …

• Around India: !ංහල, བོད་ཡིག, …

• SE Asia: ไทย, !မန$မ%, ꦲꦏ꧀ꦫꦗꦮ, …

• East Asia: Siddham

 3

Brahmic scripts

Note: The following pages use a font that
exhibits properties common to many Brahmic
scripts but doesn’t fully represent any of them.

ေြသ္တာ

 4

Brahmic scripts

• Abugida: consonants have inherent vowels

• သ sa, တ ta, ရ ra

• Inherent vowel can be overridden with
dependent vowel mark (matra)

• သ sa, သီ si, သု su, ေသ se, ေသာ so

• Independent vowels also exist

 5

Brahmic scripts
• Inherent vowel can be eliminated, e.g. sta

• Visible vowel killer (virama): သ္တ

• Half-form: স্ত

• Conjunct: স্ত

• Subjoined consonant: သ္တ

• Postfix consonant, dropped consonant, reph, …

 6

Brahmic scripts
• Numerous additional marks

• Anusvara, chandrabindu, nukta, visarga

• Special medial consonants ya, wa, ra, …

• Occur above, below, or after base

• Medial ra wraps around in some scripts: ြသ

• Overall: Far more complex than Latin script

 7

Creating glyphs

Creating glyphs
• Get a good understanding of the script

• History, forms, proportions

• Language variants

• Same Unicode character, different form

• Trends and typographic needs

• Contrast and modulation

• Weights and styles

 9

Language variants

 10

Creating glyphs: 
Best practices

• Don’t create complete clusters

• Work on characters and marks

• Use them as components

• Use substitution and positioning to form
clusters

• Create pre-composed forms for complex
shapes

 11

Example

 12

source:
https://www.microsoft.com/typography/OpenTypeDev/devanagari/intro.htm

Spacing
• Many scripts have head lines rather than base line:

• eg: िहन्दी

• Base glyphs may have layers of marks on top and
bottom

• Marks can be vowel signs, subjoined consonants
or diacritics

• Metrics used for Latin may not work for Brahmic
scripts

 14

Example:  
base + marks

source:  
https://cdac.in/index.aspx?id=mlc_gist_font

Fonts for UI
• Generally low-contrast

• Some scripts come from calligraphic tradition

• Low-contrast can be a challenge

• Line heights generally fixed for Latin

• May need to shrink above and below marks

• May need to split stacked conjuncts !" षु्ठ्र

• May need to shift the baseline for Brahmic

 16

Example: Hindi &
English on the same line

यह पाठ िहंदी में है this text is in Hindi

Including Latin glyphs:
Pros

• Some Latin is often mixed with non-Latin text

• Good idea to include matching Latin
glyphs

• English alone will suffice most of S.E.A.

• Depending on the script, the x-height may
not match the general height of Brahmic
base letters

 18

Including Latin glyphs: 
Cons

• Including a complete Latin glyph repertoire can
be laborious

• Limiting to English alone can leave other
languages incomplete – like Vietnamese

• If a bigger glyph set is needed, it may be better
to find a good Latin font that matches the
Brahmic outlines

• Focus on what you do best!

 19

Generic bases
• Always include a glyph for dotted circle: ◌

• Included as a base for showing marks or

subjoined consonants: ◌ီ, ြ◌, ◌္တ

• Make sure marks are positioned accurately

• Enable showing marks attached to

subjoined dotted circle (AAT only): ◌ ᬹ ◌᭄ᬹ
 20

Examples
• Vowel signs & diacritics

• ொ, !, ◌ః, ◌ँ, ◌ं, ◌्, ◌ु, ◌़

• Subjoined consonants

• &, ', (

• Marks attaching to subjoin consonants

• ◌᭄ᬸ ◌᭄᭄ᬸ

 21

Unicode and fonts

Unicode encoding

• Unicode encodes characters

• Font provides glyphs

• Various alternate glyphs for same character

• Ligatures combining several characters
into one glyph

• Rendering system and font interact to
produce visual representation

 23

Unicode encoding of
Brahmic scripts

• Characters usually in phonetic order

• Representation of ေသ se is သ ေ

• Exceptions: Thai, Lao in visual order

• Conjuncts usually encoded with virama

• Encoding of သ္တ sta is သ ္ တ

• Exception: Tibetan encodes subjoined
consonants

 24

Shaping

 25

101E 1039 1010 103C 1031 102C

သ ္ တ ြ ေ ာ

ေြသ္တာ

Shaping issues

• Decomposition

• Reordering

• Conjunct formation

• Other contextual forms

• Positioning

 26

Shaping support

• AAT: do it yourself, low level, flexible

• Graphite: do it yourself, high level, flexible

• OpenType

• script-specific shaping engines

• decomposition and reordering handled
(mostly) by engine

 27

What’s in a font?
• Font file contains many tables

• Outlines: glyf (TrueType), CFF (PostScript)

• Character-to-glyph mapping: cmap

• Shaping tables

• OpenType: GSUB/GPOS/GDEF

• AAT: morx/kerx/ankr

• Graphite: Silf/Glat/Gloc

 28

OpenType Shaping

Shaping tables

• GDEF: Classification of glyphs into bases,
marks, ligatures, others; other sets

• Not based on Unicode properties

• GSUB: substitutions – 1:1, 1:many, many:1,
contextual

• GPOS: positioning – base to mark, mark to
mark, kerning, cursive attachment

 30

Shaping context

• Split text into font/style runs, script/
language runs, clusters

• Map characters to glyphs with cmap table

• Let script shaping engine do its work,
interpret GDEF/GSUB/GPOS tables

• Rasterize glyphs and render them in
locations calculated by shaping

 31

Shaping context

 32

Text Englishத"#ေြသ္တာ

Font 1 English

Font 2 த"#ေြသ္တာ

Script run த"# ေြသ္တာ

Cluster த " # ေြသ္တာ

Shaping engines

• OpenType renderer has 20 shaping engines

• 13 for Brahmic scripts

• Each handles one or more scripts

• Each defines a set of shaping features

• Each provides some automatic behavior and
applies the font’s features

 33

Shaping feature
• Originally an optional font feature, such as SMALL CAPS

• Set of change rules (“lookups”) to be applied to glyph
sequence

• Selected by script and language, rarely by user

• Semantic names help organize rules

• locl – language-specific forms

• half – combine consonant and virama to half-form

• But mostly define when rules will be applied

 34

Shaping phases

• Shaping engine processes cluster in several
phases

• Some phases are automatic, based on
Unicode data

• Some process rules for specific features
provided by font

• Some do both

 35

Shaping phases
• Cluster validation

• (De)composition, localized forms – GSUB

• Reordering – GSUB

• Basic shaping – GSUB

• Topographical features – GSUB

• Presentation forms – GSUB

• Positioning – GPOS

 36

Cluster validation
• Enforces that marks follow bases in correct

order

• Inserts dotted circle before invalid marks

• Automatic, based on Unicode character data

• ီ → ◌ီ

• သ ု ီ → သု◌ီ

 37

(De)composition,
localized forms

• Decomposition partially automatic based on

Unicode data, e.g., ေ◌ာ → ေ◌ ◌ာ

• (De)composition feature ccmp: ◌ᬸ᭄
• sub sa-bali.conj by uMark-bali pa-bali.conj;

• Language-specific forms feature locl

• sub nine-deva by nine-deva.nepali;

 38

Reordering
• Mostly automatic based on Unicode data

• Pre-base vowels: သေ → ေသ

• Medial ra: သြ → ြသ

• Some glyphs identified by rphf, pref features

• May come before or after (de)composition,
or after basic shaping, depending on engine

 39

Basic shaping
• Features: abvf, blwf, pstf, and others

• Form conjuncts, e.g. ◌္တ → ◌္တ

• sub virama ta by ta.conj;

• Combine side-by-side marks: ◌ီ ◌ံ → ◌ ီံ

• lookupflag IgnoreBaseGlyphs UseMarkFilteringSet @above_base; 
sub iMark anusvara by iMark_anusvara;

• Replace non-spacing marks with spacing glyphs

 40

Topographical
shaping

• Create initial, medial, final, standalone forms
of clusters

• Only supported for Bengali and
(theoretically) in USE

 41

Presentation forms

• Bring glyphs into final forms

• Contextual alternates, separated by position:

pres, abvs, blws, psts, calt: ស្ត + ្រ◌ → ្រស្ត

• sub ra.below' @consonants @conjuncts by ra.below.low;

• Entire run visible for Myanmar and USE;
implementation dependent for other
engines

 42

Positioning

• Move glyphs into the right positions relative
to each other, using anchors: mark, mkmk

သ ◌္တ ◌ီ → သ္တီ
• Adjust spacing: kern, dist: သီံသ ီံ → သီံသ ီံ

• pos iMark_anusvara @consonant' <150 0 150 0>
iMark_anusvara;

 43

Positioning

• Entire run visible for Myanmar and USE;
implementation dependent for other
engines

• Cross-cluster spacing adjustment  

 44

Mark width zeroing
• Engines set width of marks to zero

• “Mark” determined by GDEF, not Unicode

• Outlines shifted to left to maintain right
margin

• For many marks, that’s what you want

• For some, it isn’t, and you need to
compensate using dist feature

 45

OpenType
implementations

• Write once, test everywhere

• With complete set of shaping engines

• DirectWrite, Uniscribe – Windows

• HarfBuzz – Android, Chrome, Firefox,
Java 9

• CoreText – iOS, macOS

 46

OpenType
implementations

• Adobe: incomplete set of shaping engines

• Brahmic: Devanagari, Bengali, Kannada,
Malayalam, Oriya, Tamil, Telugu (v2), Gujarati,
Gurmukhi (v1)

• World-Ready Composer – InDesign

• Middle Eastern & South Asian Composer –
Photoshop, Illustrator

• Addition of HarfBuzz being explored

 47

OpenType
documentation

• http://www.microsoft.com/en-us/
Typography/SpecificationsOverview.aspx

 48

OpenType tools

• makeotf – compiles feature code into GDEF/
GSUB/GPOS tables

• VOLT – visual OpenType layout editor for
Windows

• DTL TypeMaster

• Glyphs – complete font development
environment

 49

Apple Advanced
Typography

Differences to
OpenType

• No default behavior – it’s all up to the font

• Basic operations: substitution, ligature,
insertion, reordering, positioning

• Programmable state machines

• Full access to the complete run; information
about line breaks

 51

Where AAT is better

• Support complex script not in Unicode

• Support complex script new in Unicode

• Support scripts too complex for OpenType
(Tai Tham)

• Support new characters in existing complex
script

 52

Where AAT is better

• Reorder glyphs where OpenType doesn’t do
it automatically

• Align clusters with margins based on above-
or below-base marks

• Cross-cluster substitutions and positioning

 53

Where AAT is no good

• On any non-Apple platform 😞

 54

Reordering 
pre-base vowels

• State-action table

 EOT OOB B VPre
StartText 1 1 2 1
SawBase 1 1 2 3

• Action table

 GoTo MarkFirst? MarkLast? Advance? DoThis
1 StartText no no yes none
2 SawBase yes no yes none
3 StartText no yes yes xD->Dx

 55

Questions?

